TABLE ERRATA

274.—L. ARNDT, "Recherches sur le calcul des forces perturbatrices dans la théorie des perturbations séculaires," Bulletin de la Société des Sciences Naturelles de Neuchatel, v. 24, 1895–1896, p. 3–44.

On page 40, in the table of the hypergeometric function $F(\frac{1}{12}, \frac{5}{12}; 1, x)$ the following corrections should be made: corresponding to x = 0.650, for 1.031 8686, read 1.031 9686; and corresponding to x = 0.651(.001)0.680 the third decimal places of all tabular values should be increased by a unit.

T. H. SOUTHARD

University of California Los Angeles 24, California

275.—E. CAHEN, Théorie des Nombres, v. 2, Hermann & Cie, Paris, 1924.

On p. 55, in column 4 of the table of primitive roots of primes, the arguments bracketing 883 should read 881 and 887, respectively; and on p. 56, in column 4, the argument following 2693 should read 2699.

ROGER OSBORN

The University of Texas Austin, Texas

276.—P. L. CHEBYSHEV, Teoria delle Congruenze, Italian translation by I. Massarini, Ermanno Locscher & Co., Rome, 1895.

J. P. KULIK, "Über die Tafel primitiver Wurzeln," Journal für die reine und angewandte Mathematik, v. 45, 1853, p. 55-81.

The following corrections should be made in the tables of primitive roots of primes appearing in the Chebyshev volume.

Þ	for	read	page
19	12	13	248
59	57	56	250
79	5		252
$\frac{269}{277}$	152	153	273
	34	14	275
311	180	261	280
	218	285	280
349	307	305	286

Corresponding to the last four primes, identical corrections should be made in Kulik's paper on pages 70, 72, 76, and 81, respectively.

These errors and their corrections have been checked by use of the Canon Arithmeticus by K. G. J. Jacobi and by computation on an IBM 650.

Roger Osborn

The University of Texas Austin, Texas

277.—J. B. DALE, Five-Figure Tables of Mathematical Functions comprising Tables of Logarithms, Powers of Numbers, Trigonometric, Elliptic, and other Transcendental Functions, Second Edition, Edward Arnold & Co., London, 1949.

Page	Function	x	for	read
82	$\ln x$	5.25	1.65832	1.65823
85	e^{-x}	.04	.96080	.96079
		.06	.94177	.94176
87	e^{-x}	4.1	. 10657	.01657
87	$\cosh x$	3.3	13.5747	13.5748
90	$\log \sinh x$	2.5	.98177	.78177
	$\log \tanh x$	5.5	1 .99998	1.99999
103	$\log \Gamma(x)$	1.45	$\bar{1}.94726$	Ī.94727
106	$J_0(x)$	0.3	.99763	.97763
	$J_1(x)$	11.1	19138	19133
111	erf(x)	.18	. 20093	.20094
		.66	. 64983	.64938

C. R. SEXTON

Berkeley, California

EDITORIAL NOTE: A detailed description of these tables, including an enumeration of additional errata, appears in MTAC, v. 3, 1949, p. 514.

278.—H. B. DWIGHT, "Table of the Bessel functions and derivatives J_2 , J_1' , J_2' , N_2 , N_1' , N_2' ," Jn. Math. and Phys., v. 25, 1946, p. 93–95. H. B. DWIGHT, Mathematical Tables, second edition, Dover Publications, New York, 1958.

In the paper cited there appears the erroneous value -.257665 for N_2' (7.1). The correct value is -.274537. This correction should also be made in the corresponding entry Y_2' (7.1) shown on p. 182 of the book cited above.

JOHN B. MILLER

School of Engineering University of Auckland New Zealand

279.—J. A. RILEY & C. BILLINGS, "Gaussian quadrature of some integrals involving Airy functions," MTAC, v. 13, 1959, p. 97-101.

The abscissa value which is given as

0.717013550

should be

0.717013474,

the remainder being correct to nine decimals. All the weights are incorrect in at least the last two places; correct nine-decimal values are:

$\begin{array}{c} 0.114220867 \\ 0.113476346 \end{array}$

J. A. SEXTON

```
0.111252488
0.107578286
0.102501638
0.096088727
0.088423159
0.079604868
0.069748824
0.058983537
0.047449413
0.035297054
0.022686232
0.009798996.
```

H. J. GAWLIK

Ministry of Supply Armament Research and Development Establishment Sevenoaks, Kent

280.—HERBERT E. SALZER, "Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms," MTAC, v. 9, 1955, p. 164–177.

On p. 174 the statement is made that $p_i^{(n)}$, $1/p_i^{(n)}$, and $A_i^{(n)}$, that is, the reciprocals of zeros, zeros, and Christoffel numbers, respectively, of $P_n(x)$, are "correct to only about a unit in the last significant figure that is given." As a result of a more extended computation, the following errors of more than a single unit in the last place should be noted in the table on p. 175-176:

n	i	Function	For	Read	
4 6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3, 4 3, 4 5, 6 3, 4 5, 6 5, 6 5, 6 5, 6 5, 6 5, 6 7, 8 5, 6 7, 8 5, 6 7, 8	$\frac{1/p_i^{(n)}}{p_i^{(n)}} \frac{p_i^{(n)}}{p_i^{(n)}} \frac{1/p_i^{(n)}}{1/p_i^{(n)}} \frac{1/p_i^{(n)}}{p_i^{(n)}} \frac{p_i^{(n)}}{p_i^{(n)}} \frac{1/p_i^{(n)}}{1/p_i^{(n)}} \frac{1/p_i^{(n)}}{1/p_i^{(n)}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

HERBERT E. SALZER

Convair Astronautics San Diego, California

281.—G. W. SPENCELEY AND R. M. SPENCELEY, Smithsonian Elliptic Functions Tables, Smithsonian Institution, Washington, D. C., 1947.

We recently computed Jacobi's nome q correct to 20S, corresponding to modular angle θ equal to 15° and 45°, respectively. Comparison of these data with corresponding results published to 16S by G. W. and R. M. Spenceley revealed that their approximation to q when $\theta = 15^{\circ}$ (on pages 59 and 61) is incorrect in TABLE ERRATA

the last place, where the digit 7 should be replaced by 9. Their value of q corresponding to $\theta = 45^{\circ}$ is correct as shown on pages 179 and 181.

Additional errata in this tabulation of Jacobi's nome have been published previously by Alan Fletcher [1].

THOMAS H. SOUTHARD HELEN O. ROSAY

Department of Mathematics University of California Los Angeles, California

1. MTAC, v. 3, 1948-49, p. 280.

282.—G. N. WATSON, A Treatise on the Theory of Bessel Functions, second edition, University Press, Cambridge, 1944.

	for	read
 p. 313, line 10 from top p. 340, equation 7 p. 340, line 2 from top (upper limit of first integral) 	$\frac{\nu + m}{2} - \log 2z - \frac{1}{2}\pi i$ $- \frac{1}{2}\pi i$	$-\frac{\nu+m}{2}$ $-\log 2z + \frac{1}{2}\pi i$ $-1 + \infty i$

YUDELL L. LUKE

Midwest Research Institute Kansas City, Missouri